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1. INTRODUCTION

The ban on open-air nuclear testing forces the U. S. Army to look for alternative testing
techniques in its effort to qualify military equipment as nuclear survivable. There are currently
two techniques used to simulate the blast effects of nuclear explosions involving either high
explosives in large quantities, or special shock tubes. The simulation of nuclear blasts with high
explosives (HE) is very costly and limited to small yields (<20 kt). HE tests require much space
and their set-up is very time consuming. For these reasons, the use of specialized shock tubes is
becoming increasingly attractive. Such facilities, called large blast-wave simulators (LBS), are
large enough to accommodate full-sized tactical equipment such as trucks, tanks and helicopters.
A few LBS facilities exist abroad, the largest at the Centre d'Etudes de Gramat (CEG),

France.!* The U. S. Army, in concert with other government agencies, is presently developing
a concept of such a facility suitable to simulate both thermal and blast effects of nuclear
explosions for the survivability testing of military equipment and for research studies.

During the concept-phase, questions are raised about the necessary size and the expected
performance of such a facility, and to answer these questions, a parametric study was initiated.
A numerical study seemed preferable to an experimental one, because the latter would take up
too much preparation time, and yield too few data points. Among the many numerical fluid-
dynamic schemes, the implicit Beam-Warming method? stood out for its apparent flexibility and
numerical stability. Using this scheme, we developed a quasi-one-dimensional (Q1D) Eulerian
code for simulating the flow in shock tubes with arbitrary cross-sectional areas. In this report,
the BRL-Q1D code and its underlying theory are described. Computational results are

compared with experiments to establish confidence in the performance and the applicability of
the code.

2. THEORETICAL CONSIDERATIONS

The BRL-Q1D code incorporates two computational techniques. One is an implicit
finite-difference technique developed by Beam and Warming,2’3’4 the other is an explicit finite-
difference technique according to MacCormack.’ These techniques are applied to the quasi-one-
dimensional Euler equations in their weak conservation form. The weak conservation form is
retained as the Euler equations are transformed to a uniform, computational grid. Central
spatial differencing casts the difference equations into a block-tridiagonal structure which is
solved for the increments in the dependent variables at each successive time step.

2.1 GOVERNING EQUATIONS.

The differential Euler equations which describe the one-dimensional flow with variable
area may be written in the following form.

3(7A) ! J(EA)

- > H=o, (2.1)

* References are listed at the end of the report



where the vectors ¢, E, and H are

p pu 0
d=|pu|, B=|(pt+p)|, H= —pé;—f:: . (2.2)
¢ u(e+ p) 0

This set of three scalar equations represents the conservation of mass, momentum, and energy,
per unit volume, with the usual notation of p as density, u as velocity, e as total energy, and p
as pressure. The cross-sectional area, A, may vary with x and/or t, where x is a linear
dimension and t is time. As written, the equations are in weak conservation form because of the
vector H. If A5 f(z), H vanishes and the equations revert to the strong conservation form.

Either form is shown by Peyret and Viviand® to capture shocks accurately in the grid.

The physical, independent variables, x and t, are transformed into a uniformly-spaced
computational grid by a general transformation of the form

E=f(zt),and T=1-4. (2.3)
The resulting transformed version of Equation (2.1) is then

oE

T +h=0, (2.4)

09
or ]

where it is noted that the weak conservation form is retained. In Equation (2.4) we define the
transformed vectors as follows.

pA - pAE, + puAc, 0
§= 7~ = puA ’ E= VAE!'*'EA&:: puji&t'{" (pu2+ p)ASz ’ F': _p% ’ (25)
eA eAf: + u (e + p) A€, 0

where subscripts x and t imply partial differentiation and A = A/¢,. The system of Equation
(2.4), together with tke ideal-gas equation of state

p=(r-1)(e- L), (2.6)

where ~ is the ratio of specific heats, constitutes the governing set of one-dimensional Euler
equations with arbitrary geometry.

2.2 IMPLICIT NUMERICAL SCHEME

These equations are numerically applied to the variable-area shock-tube problem using
the implicit "Delta” formation of Warming and Beam.? Implicit time differencing and central
spacial diﬁerei{lcing are employed to evaluate the derivative terms in Equation (2.4) while the
source term, h, is evaluated explicitly. Equation (2.4) then takes the following difference form.

S0y

G- G+ o (B - B + a7 () + 062889 = 0 (27)

"I ”.."

where the subscript ”j” refers to a specific grid point and the superscript "n” to a time step.
The terms containing the vector E are non-linear functions of the conserved flow variables @,

and the system of Equation (2.7) can be solved by iteration. However, as suggested by Lomax,”

-10 -



Equation (2.7) can be solved directly with only one inversion when these terms are locally

linearized. This can be shown to be equivalent to one iterative step while the formal accuracy
of Equation (2 7) is retained. Performing the local linearization and defining the increment in
the variable @ by

AQ, =g+ - g, | (2.8)

one obtains the "Delta” form of the algorithm in matrix notation:

[1+am A" (80), = - ar (B - ar (3, (2.9)

where the bold character indicates a k£ X k matrix and & indicates central spacial differencing.

The above notation is favored by Beam and Warming®# and clearly points to the solution in
terms of the flow variable increment AQ. The solution of the dependent variables at the next
time step, therefore, is

gt =g’ + AQ, (2.10)

In Equation (2.9), I is the identity matrix and A is the Jacobian of the convective terms
with respect to the flow variables, E/3Q. The notation in Equation (2.9) requires the dot
product to be carried out prior to the spacial differencing. Although the "Delta” formation
leads to numerical efficiency and analytical simplicity, it should be poiated out that Briley and

McDonald® were first in extensively applying the local-linearization concept and implementing
the algorithm in its "Non-Delta” form. In the actual implementation of Equation (2.9), the
left-hand term in brackets is a tridiagonal system which is easily solved.

9.3 EXPLICIT NUMERICAL SCHEME

The Beam-and-Warming Algorithm is generally preferred as the robust solution technique
for stiff partial-differential equations. For the unsteady problems treated in the BRL-Q1D code,
however, it was found that the MacCormack Explicit scheme captures the shock within the
least number of grid points and consumes the lesser amount of machine time. For this reason,

it is presented here as the preferred method where resolution of surface discontinuities is
required.

The MacCormack explicit scheme is a second-order, non-centered, predictor-corrector

scheme® that alternatlvely uses forward and backward differences for the two steps as follows.
In the predictor step, @ is defined by

G =G -AT(AE) . (2.11)
In the corrector step, the new @ is defined by

G =G+ O - Ar(ve B + D7 (2.12)

In both equations, the barred superscnpts refer to predicted values; in particular, E"‘“
implies that the flux vector is evaluated using elements of the predicted Q-vector. The symbols
A and ¢ are used as the standard forward and backward difference operators, respectively.
The quantity D represents a fourth-order dlsSIpatlon term, the effect of which is governed by an
empirical constant . The dissipation term is described in the following section.

-11 -



2.4 STABILITY CRITERION AND DISSIPATION

The typical stability limitation for the system of Equation (2.9) is the Courant,

Friedrichs and Lewy (CFL) stability criterion.® Application of this criterion prevents any small
disturbance (i.e. sound wave) from traveling farther than one cell width in the grid in one time
increment.

Cy= (|7 + a) %51. (2.13)

The CFL-criterion is used in the BRL-QID code to determine the time step At from the
smallest cell width in the grid Ax using an empirically determined value for the Courant
number Cy.

To control phase errors associated with the highest frequencies, a fourth-order dissipation
term is explicitly added to Equation (2.1). This term is of the following form.

~ Q)+2 - 4Q}+1 + GQ] - 4Qj—l + Q)—Z
) (ag)

54Q
o¢t

= (8:ve) @, (2.14)

where A and v represent forward- and backward-difference operators respectively. The final
form of the computational algorithm which has been programmed is

[I + AT56A]; (AQ), = - Arse (B) - A1 (B)] + € (8¢we) @] - (2.15)

Since the order of the dissipation term is higher than the order of the truncation error of the
model difference equation, formal accuracy is maintained. At boundary grid points the
dissipation is of second order. '

2.5 INITIAL AND BOUNDARY CONDITIONS

The variables in the governing equations were non-dimensionalized by the following
relationships.

t=ray/L, b=oplos, D=plpsds, E=E[L, t=ufa,, &= ¢[p. (2.18)

The subscripts 1 and 4 refer to the initial atmospheric and driver conditions, respectively. L is
the reference length of the shock tube, and a is the sound speed. The computation is then
initialized with the following conditions,

T4l T4l
pa=1, pa=—, &= ] 2.17
4 Ps 5 4 y (7_1) ( )
T T
= = h=T, - b= — (2.18)

F‘u., ¥ Py’ ! ’7('7_1).

where T,, and P, are the initial temperature and pressure ratio across the diaphragm of the

shock tube.

At the endpoints of the grid, boundary conditions were defined. The reflective boundary
at the left-hand side of the grid (i. e. the closed end of the driver) was computationally modeled
by means of image points, such that p; = rhos, u; = —u, u, = 0, and ¢ = €3, At the right-hand
side of the grid (at the open end of the expansion tube) boundary conditions for outflow as well

-12-



as for inflow were considered. For outflow, the static pressure is specified; for inflow, the static
pressure and the density are specified. The remaining flow variables are then computed from
one-sided differences at the exit plane using backward differencing in space and forward
differencing in time.

3. BRL-Q1D CODE DESCRIPTION

The BRL-QID code was developed to study the flow in complex shock tubes with
arbitrary area changes. This development was done in view of simulating in a simple manner
the multiple-driver CEG-LBS! in France and subsequently to study other LBS designs. This

chapter discusses the input options and the basic structure of the code. The user’s input
instructions are given in the Appendix.

3.1 SHOCK-TUBE CONFIGURATIONS

A variety of shock-tube geometries can be accommodated by the code by combining and
altering the basic components of the shock tube: Driver, diaphragm section, and expansion
tube. Figure 1 illustrates some of the possible configurations.

3.1.1 Drivers

The driver may be shaped as a cylinder, a series of up to four cylinders, each with
different diameter, or as a frustrum of a come. The driver diameter is independent of the
diameter of the expansion tube and may be larger, equal, or smaller. The cylindrical driver may
be equipped with a series of baffies each of which is modeled as a parabolic constriction. The
driver length may be chosen at the discretion of the user.

3.1.2 Diaphragm Section

The diaphragm section may be just the locus of the diaphragm, or a
convergent/divergent nozzle with the diaphragm located in the throat area. A throttled
diaphragm opening may be modeled with a parabolic area constriction about the diaphragm
location. Instead of an instantaneously opening diaphragm, or in combination with it, the user
may define a fast-opening and/or closing blast valve.

3.1.3 Expansion Tube

The expansion tube (or, driven tube) may be of any length, but is assumed to have a
constant diameter which is used as a reference value. A blockage in the test-section area may
be modeled as a parabolic area constriction. At the open end of the expansion tube, a
rarefaction-wave eliminator (RWE) may be modeled as a linear area constriction which may be
varied linearly with time.

3.2 GRIDDING TECHNIQUES

Three gridding methods are presently incorporated in the BRL-Q1D code; they are linear,
multi-linear and non-linear gridding as illustrated in Figure 1.

-13 -



(a) Conventional Shock Tube with 25% Blockage in Test Section

(b) Shock Tube with Valve (modeled as Parabolic Constriction) - Linear Grid

{c) Shock Tube with Baffled Driver and Converging/Diverging Nozzle

ARRNRRRNNNL(NNNREE NR) ENNDREERRNEED!

(d) Baffled Driver Detail - Multi-Linear Grid

s
™

(e) Shock Tube with Stepped Driver, Nozzle and RWE

(f) Shock Tube with Conical Driver and Nozzle - Non-Linear Grid

Figure 1. Quasi-One-Dimensional Geometries and Numerical Grids
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3.2.1 Linear Gnd

The simplest method is a grid of constant cell width (Figure 1b). It is established by
dividing the number of grid points into the total length of the shock tube. This method is
sufficient for geometries with moderate and gradual changes of the cross-sectional area. A small
number of grid points may be chosen for a "quick and dirty” calculation. But for an accurate,
converging solution, a high number of grid points (>8600) is required.

3.2.2 Multi-Linear Grid

The second method allows clustering the grid points in critical areas by superimposing a
fine grid over the basic, coarse grid (Figure 1d). This method is to be used when there are more
than one critical areas in the shock tube, e. g. when there are baffles in the driver, or when the
driver length is short compared to the total length, and an RWE is defined at the other end of
the shock tube. This method saves grid points but requires a greater number of time steps than

the first method because the time step depends on the smallest cell size in the grid which has
been generated by the clustering.

3.2.3 Non-Linear Grid

The third method allows clustering about a single critical area as e.g. the
convergent/divergent nozzle (Figure 1f). Typically, the diaphragm location would be chosen as
the cluster point. This method is particularly convenient when the initial pressure ratio across
the diaphragm is high and the shock has to be stretched over a few cells to avoid instabilities
(i.e. negative density) in the computation. But the uscr must make sure that there are no other
critical areas far away from the clustering location which could be denuded of a sufficient
number of grid points. To help the user with this judgement, a graph of maximum and
minimum cell size versus the clustering parameters was developed.

3.2.4 Choosing the Clustering Parameters.

The clustering function used for the j-th grid point is

X =sinh|lnc+ 22 (nC,-ln C) | + X (3.1)
/3 max — 2
where €, and C, are the following functions,
Cl = ﬂ (1 - Xclust) + \/ﬂ2 (1 B Xclust)2 +1 (32)

and

Co = -BX st + V :B2 Nt + 1 (33)

Since the clustering function is already programmed into the code, it was easy to execute
a series of calculations with a single time step to find the value of the maximum cell size at the
location farthest away from the cluster point, as well as the value of the minimum cell size at
the cluster point as a function of the two input constants § and X,,,. These values were then
normalized by the average cell size,

Az =L,y [ (max - 2) (3.4)

and plotted versus 8 for constant X, (Figure 2).
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For given # and X, the graph will yield the smallest and the largest cell size in the
grid. Conversely, for a known cluster location and a predetermined critical cell size, the graph
will yield the required A-factor. The critical cell size may be chosen at the clustering point
(minimum), or at the point in the grid farthest away from it (maximum).

3.3 CODE STRUCTURE

The BRL-Q1D code is an algorithm for implicitly or explicitly solving the quasi-one-
dimensional (Q1D) Euler equations with arbitrary geometry. The code was written in
FORTRAN 77 to be executed on the CYBER system at the BRL. Another version of the code
was adapted for execution on the Vax 11/780.

3.3.1 The Main Program

The main program has two functions: It instructs the user on how to use the code, and
it coordinates the information flow by calling the appropriate subprograms. The user
instructions are contained in a comment section which is located at the head of the main
program. They are presented in the Appendix (page 55-61). Secondly, the main program serves
as a calling program controlling the information flow which is charted in Figure 3.

At the start, the program reads the necessary input data which are contained on from six
to twenty-one card images depending on the complexity of the shock-tube configuration.
Several cases of flow computations may be stacked in sequence; the program will continue to
read a new set of input data every time a computation has been finished. After the input data
have been read they are normalized and reflected back to file OUTPUT (see pages 64-66 in the
Appendix). Next, a finite-difference grid is layed-out according to the specified grid parameters.
Then the cross-sectional areas and the initial flow conditions are defined at all grid point. The
user then has the option of writing these initial conditions to file OUTPUT and/or to file
TAPE15 for later plotting. '

The time loop is entered and a new time step (At) is calculated. Now the flow variables
are calculated for the new time at all interior points of the grid using either the implicit Beam-
Warming, or the explicit MacCormack scheme. Then the flow variables are defined at the
boundaries and the flow variables may be written to files OUTPUT and/or TAPE15 as chosen

by the user. Finally, the time-dependent areas in the valve, or the RWE are redefined and
control then returns to the beginning of the time loop.

There are two checks incorporated in the time loop in order to prevent involuntary
abortion of the computation by the central processor. The first is a check on the size of the
time step. We observed in some computations that the time step would go to zero because of
excessive local flow velocities. When this happened, an overflow condition occurred which
caused the job to abort. Therefore, a conditional loop exit based on the size of the time step
was introduced which prevents this overflow condition from occurring and allows the
computation to conclude normally. The second check is made on the flow density. A negative
density is physically unreal and may be caused by too large a time step. Once a necgative
density occurs, the time loop is exited and the computation concludes normally.

Upon conclusion of the time loop, a set of blast-wave characteristics for the pressure
history is determined which characterize the simulated blast wave relative to free-field blast
waves. The pressure, density and velocity histories (versus time) are written to files OUTPUT
and/or TAPE16 together with these blast-wave characteristics. Control then returns to the
beginning of the main program where an attempt is made to read the next set of input data. If
an end-of-record mark is encountered instead, the program stops executing.
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Figure 3. Basic Information-Flow Structure in the BRL-Q1D Code.
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3.3.2 The Subprograms

There are presently 25 user-defined subprograms in the BRL-QID code, each of which
performs one particular aspect of the computation. All but one subprogram are subroutines.
The first eight subroutines are related to the input; they set up the computation. The next nine
subroutines constitute the QlD-algorithm proper; they carry out the computation. The last
eight subprograms prepare and store the output data. The names and purposes as well as the
calling routines of all these subprograms are as follows.

READIN This SUBROUTINE reads the input data from card images MAIN
stores them in common and echoes them to output.
NORMAL This SUBROUTINE normalizes the physical input data. MAIN
areas: Ar — Ar/L%,

lengths: X = X/L,,
diameters: D — D/L,,
time: t — tagmy/L.y

MULTLIN This SUBROUTINE defines a multi-linear grid-point MAIN
distribution in the computational scheme, and transforms

the x-coordinate from the physical to the computational
(¢-) plane, when MTRX = 2.

METRIX This SUBROUTINE defines the grid-point distribution in MAIN
the computational scheme, and transforms the x-coordinate

from the physical to the computational (¢-) plane
when MTRX 5 2.

AREA This SUBROUTINE determines the cross-sectional areas MAIN
at all grid points.

ARVA This SUBROUTINE defines the areas in the blast valve as MAIN
a function of time.

ARWE This SUBROUTINE defines the areas in the rarefaction MAIN
-wave eliminator (RWE).

DRIVOL This subroutine computes the reference area and the driver MAIN
volume.

INITIA This SUBROUTINE sets the initial conditions at each grid MAIN

point. The dependent variables of Euler’s conservation
equations are stored in the Q-array:

Ql = p'Ar (mass)
Q2 = pwAr (momentum)
Q3 = eAr (energy)
EIGEN This SUBROUTINE finds the largest velocity gradient in MAIN

the grid and determines the time step, At, from the CFL
stability criterion for compressible flow.
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EULERI

MACCOR

SMOOTH

FILTRX

BTRI

BCS

BC

WRIT

WRITXP

PLOTX

OUTSTA

IMPULS

BASER4

This SUBROUTINE solves the Euler equations using the
Beam-Warming implicit scheme which involves the inversion
of the block tridiagonal matrix of the flow equations. This

subprogram calls subroutines SMOOTH, FILTRX, BTRI
and BC.

This SUBROUTINE solves the Euler equations using the
explicit MacCormack technique. This subroutine calls
subprograms BCS, SMOOTH AND BC.

This SUBROUTINE does fourth order smoothing for
interior grid points, 2 < j < fna1, and second order
smoothing at the grid points j = 2 and jpa-1.

This SUBROUTINE fills the block-tridiagonal A-matrix
for the implicit solution.

This SUBROUTINE inverts the block tridiagonal matrix
(Beam-Warming solution). Each block is a 3x3 element
matrix.

This SUBROUTINE determines the flow-field parameters
at the right (=open) and left (closed) boundaries for
MacCormack’s predictor step.

This SUBROUTINE defines the flow-field parameters at
the right, open-end (with RWE) and left, closed-end
boundaries of the shock tube at the n-th time step.

This SUBROUTINE writes the geometrical shock-tube
parameters and the gas parameters to file OUTPUT.

This SUBROUTINE prints arrays, 10 numbers per line,
mixed with lines of output denoting constant-value strings.

This SUBROUTINE writes gas parameters versus X on
file TAPE15 for later plotting.

This SUBROUTINE converts gas parameters at test station
XSTA(J) to dimensional values and stores them in arrays
for later plotting and/or printing.

This SUBROUTINE finds the time of shock arrival, the
shock overpressure and the positive-phase duration at test
station XSTA(J). It determines the static and dynamic
pressure impulses using Simpson’s rule of integration and
calculates the equivalent nuclear weapon yield for both
impulses. This subroutine calls subprogram DVDINT.

This BLOCK DATA subprogram specifies the data base
for a selected nuclear blast-wave reference.
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DVDINT This SUBROUTINE does divided-difference interpolation. IMPULS
The arguments have been tabulated in descending order.

OUTPOT This SUBROUTINE writes the gas parameters which were MAIN
determined at the test station by subprogram OUTSTA,
to files OUTPUT and TAPE16 for later plotting.

3.3.3 Code Execution

The BRL-QID code is typically executed on the CYBER 7600 at BRL which runs under
the SCOPE 2 operating system of CDC. It requires 67,303 words octal in Small-Core Memory
(SCM) and 575,550 words octal in Large-Core Memory (LCM). The CPU-time required for
execution is less than 1/8 ms per grid point per time step when the code is compiled with
optimization level 2. Two sample job streams are shown in the Appendix (page 62-63).

The output is stored on two tape files (TAPE15 and TAPE16) which may be stored on
disc for later reference and serve as input to two plotting codes which are executed separate
from, and subsequent to, the BRL-Q1D code. This separation was chosen to limit the SCM field
length required for execution. Although a request for greater field length can be included on the
job card, it is undesireable because it delays the job execution until the requested memory is
made available by a human operator.

3.4 OUTPUT OPTIONS

The results of the Q1D computation are printed in tabulated form or stored on disc for
subsequent plotting. Sample tabulations and plots are presented in the Appendix.

3.4.1 Tabulated Output

There are two types of printed output. For data analysis, the complete arrays of density,
velocity and pressure are printed out at user-defined time steps together with the arrays of
grid-point location (X), 8¢/dz (XIX), areas (AR) and its derivatives, d4/9z (ARX) and A (ART).
See the example in the Appendix (page 67-74). For plotting, these arrays are written to disk via
local file TAPE1S5 at user-defined time steps.

The pressure history is printed in tabulated form at the end of the computation for user-
defined time intervals. It contains a heading with useful summary data like shock-arrival time,
peak static overpressure, positive-phase duration and static-overpressure impulse. In the table,
the static (side-on) overpressure and impulse, the dynamic pressure and impulse, the flow
velocity and the density are listed versus time. A sample listing is shown in the Appendix (page
75-76). The pressure history is also stored on disc for later plotting if the user so chooses. The
local file for this record is TAPE16.

3.4.2 Plotted Output

Two plotting codes are available, PXIDPLT for plotting pressure, density or velocity
versus distance, and PTIDPLT for plotting pressure and/or density versus time. Both plot

codes are written in FORTRAN 77 using the DISSPLA-Version 8.2 plotting package.w Both
codes contain a comment section with the necessary user instructions. They may be obtained
from the authors upon request.
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The density-versus-distance plot is very useful for studying the wave propagation in the
shock-tube flow. The incident shock, the contact surface, the recompression shock and various
shock reflections can be recognized easily in the sample plot shown in the Appendix (page 77).
The data given in the heading serve the identification of the plot. Below the plot title are listed
from 1 to 6 test stations (XSTAi), the driver volume and pressure and the reference length of

the shock tube. In the second, right-adjusted column are listed the case identifier and the plot
number, the offset value, Ay, for multiple-curve plots, and comments on shock stretching and
grid clustering when applicable. A sketch of the shock-tube configuration is drawn below these
data and above the plot with or without grid indication.

A sample plot of a pressure history is shown in the Appendix (page 78). The heading
data specify the shock-tube dimensions in column 1, the test conditions in column 2 and the
blast-wave characteristics in column 3. The shock-tube dimensions listed under the heading
include the case identification, the total (i.e., Reference) length of the facility (L-ref), the driver
length (L-drv) and volume (V-drv), the length of the expansion tube (L-dvn) and the length of
the RWE (L-rwe). :

The test station and initial conditions are listed in column 2. The pressure history is
recorded at the test section, X-sta, the location of which is given in metres from the exit of the
divergent mozzle. The initial conditions include the driver pressure (P-drv), the ambient,
atmospheric pressure (P-amb), the ambient Temperature (T-amb) and the temperature ratio
across the diaphragm (T,/T,).

The third column lists the blast-wave charactcristics, shock overpressure (P-so), shock-
arrival time (t-a), positive-phase duration (PPD), the static-overpressure impulse (I-so), the peak
dynamic pressure (Q-s) and the dynamic-pressure impulse (I-dyn). The values in parentheses
are the related free-field data for PPD and weapon yield. They were obtained by interpolation
from the reference data base as functions of the shock overpressure.

4. RESULTS AND DISCUSSION

This chapter presents the results of several computations of the flow in conventional
shock tubes and in shock tubes with varying crossectional area.

4.1 SIMULATION OF FLOW IN CONVENTIONAL SHOCK TUBES

Figure 4 shows a comparison of four computations with experimental data from the

BRL-24" shock tube.l®¥? The test conditions are listed in Table I. Also listed are three blast-
wave characteristics which were gained from the pressure curves in Figure 4. These are the
shock overpressure, p,,, the positive-phase duration, t;, and the static-overpressure impulse, I;,.

From the comparison of the computational and experimental values of these blast-wave
characteristics we learn that the computation predicts a higher shock overpressure than the
experimental value. At the same time, the computational driver empties faster leading to
shorter positive-phase durations. This is to be expected from the computation because the
inviscid Euler equations do not account for flow losses.

The positive area under the static-overpressure curve in Figure 4 was then integrated to
find the static-overpressure impulse. In the code, this was done numerically, using the
trapezoidal rule. For the experimental records, it was done graphically. The computational and
experimental values are close, although differences should be expected because of the different,
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Figure 4. Computational and Experimental Pressure Histories for the BRL-24" Shock Tube.
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TABLE I.

TEST CONDITIONS AND RESULTS FOR BRL-24” SHOCK-TUBE EXPERIMENT

Dimensions

Driver Length

10.85 metre

Inner Diameter of Driver Tube 0.575 metre
Center of Square Test Section 41.33 metre
Height and Width of Test Section 0.508 metre
Length of Expansion Tube 76.20 metre
Total Length of Shock Tube 87.05 metre
Test Conditions
Test Nr. 1 2 3 4
P kPa 102.6 102.6 102.6 102.7
amb
T K 293.7 293.7 293.7 293.8
amb
P4/P1 — 1.87 3.15 4.69 6.91
T4/T1 — 1 1 1 1
Results
Pso, exp kPa 35.9 71.5 99.0 140.
kPa 36.7 75.0 110. 148.
so,comp
t+, exp s .103 131 .203 213
t+,comp 5 .090 118 142 .156
I kPa-s 2.50 5.57 9.43 13.91
S0, exp
I kPa-s 2.49 5.64 .9.11 13.12
so,comp

i.e. inviscid versus real, flows.

Figure 5 shows a comparison of the explicit MacCormack scheme with the implicit

Beam-Warming method for a flow simulation in the BRL-2.44m shock tube.’’ The smoothness
of the "implicit” pressure curve bears witness to the stability of the Beam-Warming scheme.
The MacCormack scheme proved to be much more sensitive to area changes:and prone to

develop instabilities early in the computation.
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